USN

Third Semester B.E. Degree Examination, January 2013 **Analog Electronic Circuits**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Explain the diode equivalent circuit with its characteristics.

(06 Marks)

b. Explain transition and diffusion capacitance in an P-N junction diode.

(06 Marks)

c. Plot the transfer characteristic for the circuit shown in Fig. Q1(c) and write the transfer characteristic equation. Sketch V_0 if $V_i = 40$ sinwt. Assume $V_K = 1$ V for the diode. (08 Marks)

Define operating point. Explain its significance.

(04 Marks)

Derive an expression for I_B, I_C and V_{CE} for an collector feedback bias.

(08 Marks)

Design an emitter stabilized network shown in Fig. Q2(c) using the following data:

(08 Marks)

$$I_{CQ} = \frac{1}{2}I_{C}(sat), V_{CEQ} = \frac{1}{2}V_{CC}$$
 $V_{CC} = 20 \text{ V}, I_{C}(sat) = 10 \text{ mA}$
 $\beta = 120, R_{C} = 4R_{E}$
Assume $I_{E} \cong I_{C}$

Derive an expression for Z_i, Z_o, A_v and A_l for common-emitter configuration using emitter 3 bias with unbypassed R_E. (Using r_e model) (10 Marks) For the fixed bias configuration shown in Fig. Q3(b), calculate

- - i) A_{VNL}, Z_i and Z_o
 - ii) A_V, A_{VS} and A_I

iii) Calculate V_0 , if $V_S = 20$ mV. Take $\beta = 100$

(10 Marks)

Fig. Q3 (b) 1 of 3

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- a. Derive an expression for Miller input capacitance and Miller output capacitance. (10 Marks)
 - b. For the circuit shown in Fig. Q4(b), calculate the following:
 - ii) Input existence R_i iii) Mid band voltage gains $A_V = \frac{V_0}{V_s}$ and $A_{VS} = \frac{V_0}{V_s}$ i) r_e,
 - iv) lower cutoff frequency due to C_C . For transistor $\beta = 100$ and $r_0 = \infty$.

Fig. Q4 (b) PART – B

5 Explain the difference between cascade and cascode connections and its application.

(05 Marks)

Derive an expression for Z_i, Z_o, A_v for Darlington emitter follower.

(10 Marks)

c. Explain feed back amplifier topologies.

(05 Marks)

- 6 With a neat circuit diagram, explain transformer coupled class A amplifier and derive the expression for AC power delivered to the load, show maximum efficiency is 50%. (10 Marks)
 - The following readings are available for a power amplifier. Calculate the second harmonic distortion in each case:
 - i) $V_{CEQ} = 10 \text{ V}, V_{CE(max)} = 18 \text{ V}, V_{CE(min)} = 1 \text{ V}$
 - ii) $V_{CEQ} = 10 \text{ V}$, $V_{CE(max)} = 19 \text{ V}$, $V_{CE(min)} = 1 \text{ V}$

(05 Marks)

- For the circuit shown in Fig. Q6 (c) the input signal results in a peak base current of 1 mA
 - i) Calculate the ac output power.
 - ii) Calculate the dc input power dissipated by the circuit.
 - iii) Calculate the efficiency.

(05 Marks)

a. Explain the basic principle of oscillators. 7

(06 Marks)

- b. Explain with a neat circuit diagram the operation of R-C phase shift oscillator.
- (08 Marks)

c. A crystal has the following parameters:

$$L = 0.334 \text{ H}, C = 0.065 \text{ pF}, C_M = 1 \text{ pF}, R = 5.5 \text{ k}\Omega$$

- i) Calculate the series resonant frequency.
- ii) Calculate the parallel resonant frequency.
- iii) Find the Q of the crystal.

(06 Marks)

8 a. Derive an expression for A_v , Z_i and Z_0 for an JFET source follower.

(10 Marks)

b. For the network shown in Fig. Q8 (b), $V_{GSQ} = -2.86$ V, $I_{DQ} = 4.56$ mA, $I_{DSS} = 16$ mA, $V_P = -4$ V, $Y_{OS} = 30$ μ s. Determine i) g_m ii) r_d iii) z_i and iv) z_0 without r_d and v) A_v without r_d .

Fig. Q8 (b)

* * * * *

